Что такое первая производная. Что такое производная

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную , надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного - в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

Из таблицы производных выясняем, что производная "икса" равна единице, а производная синуса - косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

Пример 2. Найти производную функции

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Таблица производных простых функций

1. Производная константы (числа). Любого числа (1, 2, 5, 200...), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
2. Производная независимой переменной. Чаще всего "икса". Всегда равна единице. Это тоже важно запомнить надолго
3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
4. Производная переменной в степени -1
5. Производная квадратного корня
6. Производная синуса
7. Производная косинуса
8. Производная тангенса
9. Производная котангенса
10. Производная арксинуса
11. Производная арккосинуса
12. Производная арктангенса
13. Производная арккотангенса
14. Производная натурального логарифма
15. Производная логарифмической функции
16. Производная экспоненты
17. Производная показательной функции

Правила дифференцирования

1. Производная суммы или разности
2. Производная произведения
2a. Производная выражения, умноженного на постоянный множитель
3. Производная частного
4. Производная сложной функции

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

причём

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны , т.е.

Правило 2. Если функции

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

причём

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

Следствие 1. Постоянный множитель можно выносить за знак производной :

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные - в статье "Производная произведения и частного функций " .

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u "v , в котором u - число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка - механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие "Производная суммы дробей со степенями и корнями ".

Если же перед Вами задача вроде , то Вам на занятие "Производные простых тригонометрических функций".

Пошаговые примеры - как найти производную

Пример 3. Найти производную функции

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители - суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, "икс" у нас превращается в единицу, а минус 5 - в ноль. Во втором выражении "икс" умножен на 2, так что двойку умножаем на ту же единицу как производную "икса". Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие "Производная суммы дробей со степенями и корнями" .

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок "Производные простых тригонометрических функций" .

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых - квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого - квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на .

Производная функции одной переменной.

Введение.

Настоящие методические разработки предназначены для студентов факультета промышленное и гражданское строительство. Они составлены применительно к программе курса математики по разделу «Дифференциальное исчисление функций одного переменного».

Разработки представляют собой единое методическое руководство, включающее в себя: краткие теоретические сведения; «типовые» задачи и упражнения с подробными решениями и пояснениями к этим решениям; варианты контрольной работы.

В конце каждого параграфа дополнительные упражнения. Такая структура разработок делает их пригодными для самостоятельного овладения разделом при самой минимальной помощи со стороны преподавателя.

§1. Определение производной.

Механический и геометрический смысл

производной.

Понятие производной является одним из самых важных понятий математического анализа.Оно возникло еще в 17 веке. Формирование понятия производной исторически связано с двумя задачами: задачей о скорости переменного движения и задачей о касательной к кривой.

Эти задачи, несмотря на их различное содержание, приводят к одной и той же математической операции, которую нужно провести над функцией.Эта операция получила в математике специальное название. Она называется операцией дифференцирования функции. Результат операции дифференцирования называется производной.

Итак, производной функцииy=f(x) в точкеx0 называется предел (если он существует) отношения приращения функции к приращению аргумента
при
.

Производную принято обозначать так:
.

Таким образом, по определению

Для обозначения производной употребляются также символы
.

Механический смысл производной.

Если s=s(t) – закон прямолинейного движения материальной точки, то
есть скорость этой точки в момент времениt.

Геометрический смысл производной.

Если функция y=f(x) имеет производную в точке, то угловой коэффициент касательной к графику функции в точке
равен
.

Пример.

Найдите производную функции
в точке=2:

1) Дадим точке =2 приращение
. Заметим, что.

2) Найдем приращение функции в точке =2:

3) Составим отношение приращения функции к приращению аргумента:

Найдем предел отношения при
:

.

Таким образом,
.

§ 2. Производные от некоторых

простейших функций.

Студенту необходимо научиться вычислять производные конкретных функций: y=x,y=и вообщеy=.

Найдем производную функции у=х.

т.е. (x)′=1.

Найдем производную функции

Производная

Пусть
тогда

Легко заметить закономерность в выражениях производных от степенной функции
приn=1,2,3.

Следовательно,

. (1)

Эта формула справедлива для любых действительных n.

В частности, используя формулу (1), имеем:

;

.

Пример.

Найдите производную функции

.

.

Данная функция является частным случаем функции вида

при
.

Используя формулу (1), имеем

.

Производные функций y=sin x и y=cos x.

Пусть y=sinx.

Разделим на ∆x, получим

Переходя к пределу при ∆x→0, имеем

Пусть y=cosx .

Переходя к пределу при ∆x→0, получим

;
. (2)

§3. Основные правила дифференцирования.

Рассмотрим правила дифференцирования.

Теорема 1 . Если функцииu=u(x) иv=v(x) дифференцируемы в данной точкеx,то в этой точке дифференцируема и их сумма, причем производная суммы равна сумме производных слагаемых: (u+v)"=u"+v".(3)

Доказательство: рассмотрим функцию y=f(x)=u(x)+v(x).

Приращению ∆x аргумента x соответствуют приращения ∆u=u(x+∆x)-u(x), ∆v=v(x+∆x)-v(x) функций u и v. Тогда функция y получит приращение

∆y=f(x+∆x)-f(x)=

=--=∆u+∆v.

Следовательно,

Итак, (u+v)"=u"+v".

Теорема 2. Если функцииu=u(x) иv=v(x) дифференцируемы в данной точкеx, то в той же точке дифференцируемо и их произведение.При этом производная произведения находится по следующей формуле: (uv)"=u"v+uv". (4)

Доказательство: Пусть y=uv, где u и v – некоторые дифференцируемые функции от x. Дадим x приращение ∆x;тогда u получит приращение ∆u, v получит приращение ∆v и y получит приращение ∆y.

Имеем y+∆y=(u+∆u)(v+∆v), или

y+∆y=uv+u∆v+v∆u+∆u∆v.

Следовательно, ∆y=u∆v+v∆u+∆u∆v.

Отсюда

Переходя к пределу при ∆x→0 и учитывая, чтоuиvне зависят от ∆x, будем иметь

Теорема 3 . Производная частного двух функций равна дроби, знаменатель которой равен квадрату делителя, а числитель- разности между произведением производной делимого на делитель и произведением делимого на производную делителя, т.е.

Если
то
(5)

Теорема 4. Производная постоянной равна нулю, т.е. если y=C, где С=const, то y"=0.

Теорема 5. Постоянный множитель можно выносить за знак производной, т.е. если y=Cu(x), где С=const, то y"=Cu"(x).

Пример 1.

Найдите производную функции

.

Данная функция имеет вид
, гдеu=x,v=cosx. Применяя правило дифференцирования (4), находим

.

Пример 2.

Найдите производную функции

.

Применим формулу (5).

Здесь
;
.

Задачи.

Найдите производные следующих функций:

;

11)

2)
; 12)
;

3)
13)

4)
14)

5)
15)

6)
16)

7 )
17)

8)
18)

9)
19)

10)
20)

Вычисление производной - одна из самых важных операций в дифференциальном исчислении. Ниже приводится таблица нахождения производных простых функций. Более сложные правила дифференцирования смотрите в других уроках:
  • Таблица производных экспоненциальных и логарифмических функций
Приведенные формулы используйте как справочные значения. Они помогут в решении дифференциальных уравнений и задач. На картинке, в таблице производных простых функций, приведена "шпаргалка" основных случаев нахождения производной в понятном для применения виде, рядом с ним даны пояснения для каждого случая.

Производные простых функций

1. Производная от числа равна нулю
с´ = 0
Пример:
5´ = 0

Пояснение :
Производная показывает скорость изменения значения функции при изменении аргумента. Поскольку число никак не меняется ни при каких условиях - скорость его изменения всегда равна нулю.

2. Производная переменной равна единице
x´ = 1

Пояснение :
При каждом приращении аргумента (х) на единицу значение функции (результата вычислений) увеличивается на эту же самую величину. Таким образом, скорость изменения значения функции y = x точно равна скорости изменения значения аргумента.

3. Производная переменной и множителя равна этому множителю
сx´ = с
Пример:
(3x)´ = 3
(2x)´ = 2
Пояснение :
В данном случае, при каждом изменении аргумента функции (х ) ее значение (y) растет в с раз. Таким образом, скорость изменения значения функции по отношению к скорости изменения аргумента точно равно величине с .

Откуда следует, что
(cx + b)" = c
то есть дифференциал линейной функции y=kx+b равен угловому коэффициенту наклона прямой (k).


4. Производная переменной по модулю равна частному этой переменной к ее модулю
|x|" = x / |x| при условии, что х ≠ 0
Пояснение :
Поскольку производная переменной (см. формулу 2) равна единице, то производная модуля отличается лишь тем, что значение скорости изменения функции меняется на противоположное при пересечении точки начала координат (попробуйте нарисовать график функции y = |x| и убедитесь в этом сами. Именно такое значение и возвращает выражение x / |x| . Когда x < 0 оно равно (-1), а когда x > 0 - единице. То есть при отрицательных значениях переменной х при каждом увеличении изменении аргумента значение функции уменьшается на точно такое же значение, а при положительных - наоборот, возрастает, но точно на такое же значение.

5. Производная переменной в степени равна произведению числа этой степени и переменной в степени, уменьшенной на единицу
(x c)"= cx c-1 , при условии, что x c и сx c-1 ,определены а с ≠ 0
Пример:
(x 2)" = 2x
(x 3)" = 3x 2
Для запоминания формулы :
Снесите степень переменной "вниз" как множитель, а потом уменьшите саму степень на единицу. Например, для x 2 - двойка оказалась впереди икса, а потом уменьшенная степень (2-1=1) просто дала нам 2х. То же самое произошло для x 3 - тройку "спускаем вниз", уменьшаем ее на единицу и вместо куба имеем квадрат, то есть 3x 2 . Немного "не научно", но очень просто запомнить.

6. Производная дроби 1/х
(1/х)" = - 1 / x 2
Пример:
Поскольку дробь можно представить как возведение в отрицательную степень
(1/x)" = (x -1)" , тогда можно применить формулу из правила 5 таблицы производных
(x -1)" = -1x -2 = - 1 / х 2

7. Производная дроби с переменной произвольной степени в знаменателе
(1 / x c)" = - c / x c+1
Пример:
(1 / x 2)" = - 2 / x 3

8. Производная корня (производная переменной под квадратным корнем)
(√x)" = 1 / (2√x) или 1/2 х -1/2
Пример:
(√x)" = (х 1/2)" значит можно применить формулу из правила 5
(х 1/2)" = 1/2 х -1/2 = 1 / (2√х)

9. Производная переменной под корнем произвольной степени
(n √x)" = 1 / (n n √x n-1)

Исследование функций. В этой статье мы поговорим о задачах, в которых рассматриваются функции и в условии стоят вопросы связанные с их исследованием. Рассмотрим основные теоретические моменты, которые необходимо знать и понимать для их решения.

Это целая группа задач входящих в ЕГЭ по математике. Обычно ставится вопрос о нахождении точек максимума (минимума) или определения наибольшего (наименьшего) значения функции на заданном интервале. Рассматриваются:

— Степенные и иррациональные функции.

— Рациональные функции.

— Исследование произведений и частных.

— Логарифмические функции.

— Тригонометрические функции.

Если вы поняли теорию пределов, понятие производной, свойства производной для исследования графиков функций и её , то такие задачи никакого затруднения у вас не вызовут и вы решите их с лёгкостью.

Информация ниже — это теоретические моменты, понимание которых позволит осознать, как решать подобные задачи. Постараюсь изложить их именно так, чтобы даже тот, кто эту тему пропустил или изучил слабо, смог без особых затруднений решать подобные задачи.

В задачах данной группы, как уже сказано, требуется найти либо точку минимума (максимума) функции, либо наибольшее (наименьшее) значение функции на интервале.

Точки минимума, максимума. Свойства производной.

Рассмотрим график функции:


Точка А – это точка максимума, на интервале от О до А функция возрастает, на интервале от А до В убывает.

Точка В – это точка минимума, на интервале от А до В функция убывает, на интервале от В до С возрастает.

В данных точках (А и В) производная обращается в нуль (равна нулю).

Касательные в этих точках параллельны оси ox .

Добавлю, что точки, в которых функция меняет своё поведение с возрастания на убывание (и наоборот, с убывания на возрастание), называются экстремумами.

Важный момент:

1. Производная на интервалах возрастания имеет положительный знак (п ри подстановке значения из интервала в производную получается положительное число).

Значит, если производная в определённой точке из некоторого интервала имеет положительное значение, то график функции на этом интервале возрастает.

2. На интервалах убывания производная имеет отрицательный знак (при подстановке значения из интервала в выражение производной получается отрицательное число).

Значит, если производная в определённой точке из некоторого интервала имеет отрицательное значение, то график функции на этом интервале убывает.

Это надо чётко уяснить!!!

Таким образом, вычислив производную и приравняв её к нулю, можно найти точки, которые разбивают числовую ось на интервалы. На каждом из этих интервалов можно определить знак производной и далее сделать вывод о её возрастании или убывании.

*Отдельно следует сказать о точках, в которых производая не существует. Например, можем получить производную, знаменатель которой при определённом х обращается в нуль. Понятно, что при таком х производная не существует. Так вот, данную точку также необходимо учитывать при определени интервалов возрастания (убывания).

Функция в точках, где производная равна нулю меняет свой знак не всегда. Об этом будет отдельная статья. На самом ЕГЭ таких задач не будет.

Вышеизложенные свойства необходимы для исследования поведения функции на возрастание и убывание.

Что ещё необходимо знать для решения оговоренных задач: таблицу производных и правила дифференцирования. Без этого никак. Это базовые знания, в теме производной. Производные элементарных функций вы должны знать на отлично.

Вычисляя производную сложной функции f (g (x )), представьте, что функция g (x ) это переменная и далее вычисляйте производную f ’(g (x )) по табличным формулам как обычную производную от переменной. Затем полученный результат умножьте на производную функции g (x ) .

Посмотрите видеоурок Максима Семенихина о сложной функции:

Задачи на нахождение точек максимума и минимума

Алгоритм нахождения точек максимума (минимума) функции:

1. Находим производную функции f ’(x ).

2. Находим нули производной (приравниванием производную к нулю f ’(x )=0 и решаем полученное уравнение). Также находим точки в которых производная не существует (в частности это касается дробно-рациональных функций).

3. Отмечаем полученные значения на числовой прямой и определяем знаки производной на этих интервалах путём подстановки значений из интервалов в выражение производной.

Вывод будет один из двух:

1. Точка максимума это точка, в которой производная меняет значение с положительного на отрицательное.

2. Точка минимума это точка, в которой производная меняет значение с отрицательного на положительное.

Задачи на нахождение наибольшего или наименьшего значения

функции на интервале.

В другом типе задач требуется найти наибольшее или наименьшее значение функции на заданном интервале.

Алгоритм нахождения наибольшего (наименьшего) значения функции:

1. Определяем, есть ли точки максимума (минимума). Для этого находим производную f ’(x ) , затем решаем f ’(x )=0 (пункты 1 и 2 из предыдущего алгоритма).

2. Определяем, принадлежат ли полученные точки заданному интервалу и записываем лежащие в его пределах.

3. Подставляем в исходную функцию (не в производную, а в данную в условии) границы данного интервала и точки (максимума-минимума), лежащие в пределах интервала (п.2).

4. Вычисляем значения функции.

5. Выбираем из полученных наибольшее (наименьше) значение, в зависимости от того, какой вопрос был поставлен в задаче и далее записываем ответ.

Вопрос: для чего в задачах на нахождение наибольшего (наименьшего) значения функции необходимо искать точки максимума (минимума)?

Ответ лучше всего это проиллюстрировать, посмотрите схематичное изображение графиков, задаваемых функций:



В случаях 1 и 2 достаточно подставить границы интервала, чтобы определить наибольшее или наименьшее значение функции. В случаях 3 и 4 необходимо найти нули функции (точки максимума-минимума). Если мы подставим границы интервала (не находя нули функции), то получим неверный ответ, это видно по графикам.

И всё дело в том, что мы по заданной функции не можем увидеть как выглядит график на интервале (имеет ли он максимум или минимум в пределах интервала). Потому находите нули функции обязательно!!!

Если уравнение f’(x )=0 не будет иметь решения, это значит, что точек максимума-минимума нет (рисунок 1,2), и для нахождения поставленной задачи в данную функцию подставляем только границы интервала.

Ещё один важный момент. Помните, что ответом должно быть целое число или конечная десятичная дробь. При вычислении наибольшего и наименьшего значения функции вы будете получать выражения с числом е и Пи, а также выражения с корнем. Запомните, что до конца вам их вычислять не нужно, и так понятно, что результат таких выражений ответом являться не будет. Если возникнет желание вычислить такое значение, то сделайте это (числа: е ≈ 2,71 Пи ≈ 3,14).

Много написал, запутал наверное? По конкретным примерам вы увидите, что всё просто.

Далее хочу открыть вам маленький секрет. Дело в том, что многие задания можно решить без знания свойств производной и даже без правил дифференцирования. Об этих нюансах я вам обязательно расскажу и покажу как это делается? не пропустите!

Но тогда зачем же я вообще изложил теорию и ещё сказал, что её нужно знать обязательно. Всё верно – знать надо. Если её поймёте, тогда никакая задача в этой теме в тупик вас не поставит.

Те «хитрости», о которых вы узнаете, помогут вам при решении конкретных (некоторых) прототипов задач. К ак дополнительный инструмент эти приёмы использовать, конечно, удобно. Задачу можно решить в 2-3 раза быстрее и сэкономить время на решение части С.

Всего доброго!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажите о сайте в социальных сетях.

При решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из данной функции y=f(x) получать новую функцию, которую называют производной функцией (или просто производной) данной функции f(x) и обозначают символом

Тот процесс, с помощью которого из данной функции f(x) получают новую функцию f " (x) , называют дифференцированием и состоит он из следующих трех шагов: 1) даем аргументу x приращение  x и определяем соответствующее приращение функции  y = f(x+  x) -f(x) ; 2) составляем отношение

3) считая x постоянным, а  x 0, находим
, который обозначаем черезf " (x) , как бы подчеркивая тем самым, что полученная функция зависит лишь от того значения x , при котором мы переходим к пределу. Определение : Производной y " =f " (x) данной функции y=f(x) при данном x называется предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю, если, конечно, этот предел существует, т.е. конечен. Таким образом,
, или

Заметим, что если при некотором значении x , например при x=a , отношение
при x 0 не стремится к конечному пределу, то в этом случае говорят, что функция f(x) при x=a (или в точке x=a ) не имеет производной или не дифференцируема в точке x=a .

2. Геометрический смысл производной.

Рассмотрим график функции у = f (х), дифференцируемой в окрест­ностях точки x 0

f(x)

Рассмотрим произвольную прямую, проходящую через точку гра­фика функции - точку А(x 0 , f (х 0)) и пересекающую график в некоторой точке B(x;f(x)). Такая прямая (АВ) называется секущей. Из ∆АВС: АС = ∆x; ВС =∆у; tgβ=∆y/∆x .

Так как АС || Ox, то ALO = BAC = β (как соответственные при параллельных). Но ALO - это угол наклона секущей АВ к положи­тельному направлению оси Ох. Значит, tgβ = k - угловой коэффициент прямой АВ.

Теперь будем уменьшать ∆х, т.е. ∆х→ 0. При этом точка В будет прибли­жаться к точке А по графику, а секущая АВ будет поворачиваться. Пре­дельным положением секущей АВ при ∆х→ 0 будет прямая (a), называемая касательной к графику функции у = f (х) в точке А.

Если перейти к пределу при ∆х → 0 в равенстве tgβ =∆y/∆x, то получим
илиtg =f "(x 0), так как
-угол накло­на касательной к положительному направлению оси Ох
, по определению производной. Но tg = k - угловой коэффициент каса­тельной, значит, k = tg = f "(x 0).

Итак, геометрический смысл производной заключается в следую­щем:

Производная функции в точке x 0 равна угловому коэффициенту ка­сательной к графику функции, проведенной в точке с абсциссой x 0 .

3. Физический смысл производной.

Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x(t). Известно (из курса физики), что средняя скорость за промежуток времени равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.

Vср = ∆x/∆t. Перейдем к пределу в последнем равенстве при ∆t → 0.

lim Vср (t) = (t 0) - мгновенная скорость в момент времени t 0 , ∆t → 0.

а lim = ∆x/∆t = x"(t 0) (по определению производной).

Итак, (t) =x"(t).

Физический смысл производной заключается в следующем: произ­водная функции y = f (x ) в точке x 0 - это скорость изменения функции f (х) в точке x 0

Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.

(t) = x"(t) - скорость,

a(f) = "(t) - ускорение, или

Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращатель­ном движении:

φ = φ(t) - изменение угла от времени,

ω = φ"(t) - угловая скорость,

ε = φ"(t) - угловое ускорение, или ε = φ"(t).

Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:

m = m(х) - масса,

x  , l - длина стержня,

р = m"(х) - линейная плотность.

С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука

F = -kx, x – переменная координата, k- коэффициент упругости пружины. Положив ω 2 =k/m, получим дифференциальное уравнение пружинного маятника х"(t) + ω 2 x(t) = 0,

где ω = √k/√m частота колебаний (l/c), k - жесткость пружины (H/m).

Уравнение вида у" + ω 2 y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решени­ем таких уравнений является функция

у = Asin(ωt + φ 0) или у = Acos(ωt + φ 0), где

А - амплитуда колебаний, ω - циклическая частота,

φ 0 - начальная фаза.

Чувства