Схема работы реактивного двигателя. Россия будет выращивать реактивные двигатели

В котором воздух является основным компонентом рабочего тела. При этом воздух, поступающий в двигатель из окружающей атмосферы, подвергается сжатию и нагреву.

Нагрев осуществляется в камерах сгорания путем сжигания горючего (керосина и др.) с использованием кислорода воздуха в качестве окислителя. В случае применения ядерного топлива воздух в двигателе нагревается в специальных теплообменниках . По способу предварительного сжатия воздуха ВРД подразделяются на бескомпрессорные и компрессорные (газотурбинные).

В бескомпрессорных ВРД сжатие осуществляется только за счет скоростного напора воздушного потока, набегающего на двигатель в полете. В компрессорных ВРД воздух дополнительно сжимается в компрессоре , приводимом во вращение газовой турбиной, поэтому их называют еще турбокомпрессорными или газотурбинными двигателями (ГТВРД). В компрессорных ВРД нагретый газ высокого давления, отдавая часть своей энергии газовой турбине, вращающей компрессор, попадая в реактивное сопло , расширяется и выбрасывается из двигателя со скоростью, превышающей скорость полета ЛА. Это и создает силу тяги. Такие ВРД относят к двигателям прямой реакции. Если же часть энергии нагретого газа, отданная газовой турбине, становится значительной и турбина при этом приводит во вращение не только компрессор, но и специальный движитель (например, воздушный винт), обеспечивающий к тому же создание основной силы тяги, то такие ВРД называются двигателями непрямой реакции.

Использование воздушной среды в качестве компонента рабочего тела позволяет иметь на борту ЛА только одно горючее, доля которого в объеме рабочего тела в ВРД не превышает 2-6%. Эффект подъемной силы крыла позволяет осуществлять полет с тягой двигателя, которая существенно ниже массы ЛА. Оба эти обстоятельства предопределили преимущественное применение ВРД на ЛА при полетах в атмосфере. Особенно широко распространены компрессорные газотурбинные ВРД, являющиеся основным типом двигателей в современной военной и гражданской авиации.

При больших сверхзвуковых скоростях полета (М > 2,5) повышение давления только за счет динамического сжатия воздуха становится достаточно большим. Это позволяет создавать бескомпрессорные ВРД, которые по виду рабочего процесса подразделяются на прямоточные (ПВРД) и пульсирующие (ПуВРД). ПВРД состоит из входного устройства (воздухозаборника), камеры сгорания и выходного устройства (реактивного сопла). В сверхзвуковом полете встречный поток воздуха тормозится в каналах воздухозаборника, и его давление повышается. Сжатый воздух поступает в камеру сгорания, куда через форсунку впрыскивается горючее (керосин). Горение керосиново-воздушной смеси в камере (после предварительного ее воспламенения) осуществляется практически при мало изменяющемся давлении. Нагретый до высокой температуры (более 2000 К) газ высокого давления ускоряется в реактивном сопле и истекает из двигателя со скоростью, превышающей скорость полета ЛА. Параметры ПВРД в значительной степени зависят от высоты и скорости полета.

При скоростях полета, меньших двойной скорости звука (М > 5,0-6,0) обеспечение высокой эффективности ПВРД сопряжено с трудностями организации процесса горения в сверхзвуковом потоке и другими особенностями высокоскоростных течений. ПВРД находят применение в качестве маршевых двигателей сверхзвуковых крылатых ракет, двигателей вторых ступеней зенитных управляемых ракет, летающих мишеней, двигателей реактивных винтов и др.

Реактивное сопло также имеет изменяемые размеры и форму. Взлет самолета с ПВРД обычно производится с помощью ракетных силовых агрегатов (на жидком или твердом топливе). Преимущества ПВРД - способность эффективно работать на высоких скоростях и высотах полета, чем компрессорные ВРД; более высокая экономичность по сравнению с жидкостными ракетными двигателями (так как в ПВРД используется кислород воздуха, а в ЖРД кислород вводится как компонент топлива), простота конструкции и др.

К их недостаткам относят необходимость предварительного разгона JIA другими типами двигателей, низкую эффективность на малых скоростях полета.

В зависимости от скорости ПВРД подразделяют на сверхзвуковые (СПВРД) при М от 1,0 до 5,0 и гиперзвуковые (ГПВРД) при М > 5,0. ГПВРД перспективны для воздушно-космических аппаратов. ПуВРД отличаются от ПВРД наличием специальных клапанов на входе в камеру сгорания и пульсирующим процессом горения. Горючее и воздух поступают в камеру сгорания периодически, когда клапаны открыты. После сгорания смеси давление в камере сгорания повышается, и входные клапаны закрываются. Газы с высоким давлением с большой скоростью устремляются в специальное выходное устройство и выбрасываются из двигателя. К концу их истечения давление в камере сгорания значительно снижается, клапаны снова открываются, и цикл работы повторяется. ПуВРД находили ограниченное применение в качестве маршевых двигателей дозвуковых крылатых ракет, в авиамоделях и др.

В передней части реактивного двигателя располагается вентилятор. Он забирает воздух из внешней среды, засасывая его в турбину. В двигателях, применяемых в ракетах, воздух заменяет жидкий кислород. Вентилятор снабжен множеством титановых лопастей, имеющих специальную форму.

Площадь вентилятора стараются сделать достаточно большой. Помимо забора воздуха эта часть системы участвует также и в охлаждении двигателя, предохраняя его камеры от разрушения. Позади вентилятора располагается компрессор. Он под большим давлением нагнетает воздух в камеру сгорания.

Один из главных конструктивных элементов реактивного двигателя – камера сгорания. В ней топливо смешивается с воздухом и поджигается. Происходит возгорание смеси, сопровождающееся сильным разогревом деталей корпуса. Топливная смесь под действием высокой температуры расширяется. Фактически в двигателе происходит управляемый взрыв.

Из камеры сгорания смесь топлива с воздухом поступает в турбину, которая состоит из множества лопаток. Реактивный поток с усилием давит на них и приводит турбину во вращение. Усилие передается на вал, компрессор и вентилятор. Образуется замкнутая система, для работы которой требуется лишь постоянный подвод топливной смеси.

Последняя по счету деталь реактивного двигателя – сопло. Сюда из турбины поступает разогретый поток, формируя реактивную струю. В эту часть двигателя также подается от вентилятора холодный воздух. Он служит для охлаждения всей конструкции. Воздушный поток защищает манжету сопла от вредного воздействия реактивной струи, не позволяя деталям расплавиться.

Как работает реактивный двигатель

Рабочим телом двигателя является реактивная . Она с очень большой скоростью истекает из сопла. При этом образуется реактивная сила, которая толкает все устройство в противоположном направлении. Тяговое усилие создается исключительно за счет действия струи, без какой-либо опоры на другие тела. Эта особенность работы реактивного двигателя позволяет использовать его в качестве силовой установки для ракет, самолетов и космических аппаратов.

Отчасти работа реактивного двигателя сравнима с действием струи воды, вытекающей из шланга. Под огромным давлением жидкость подается по рукаву к зауженному концу шланга. Скорость воды при выходе из брандспойта выше, чем внутри шланга. При этом образуется сила обратного давления, которая позволяет пожарному удерживать шланг лишь с большим трудом.

Производство реактивных двигателей представляет собой особую отрасль техники. Поскольку температура рабочего тела здесь достигает нескольких тысяч градусов, детали двигателя изготовляют из высокопрочных металлов и тех материалов, которые устойчивы к плавлению. Отдельные части реактивных двигателей выполняют, к примеру, из специальных керамических составов.

Видео по теме

Функция тепловых двигателей – преобразование тепловой энергии в полезную механическую работу. Рабочим телом в таких установках служит газ. Он с усилием давит на лопатки турбины или на поршень, приводя их в движение. Самые простые примеры тепловых двигателей – это паровые машины, а также карбюраторные и дизельные двигатели внутреннего сгорания.

Инструкция

Поршневые тепловые двигатели имеют в своем составе один или несколько цилиндров, внутри которых находится поршень. В объеме цилиндра происходит расширение горячего газа. При этом поршень под воздействием газа перемещается и совершает механическую работу. Такой тепловой двигатель преобразует возвратно-поступательное движение поршневой системы во вращение вала. Для этой цели двигатель оснащается кривошипно-шатунным механизмом.

К тепловым двигателям внешнего сгорания относятся паровые машины, в которых рабочее тело разогревается в момент сжигания топлива за пределами двигателя. Нагретый газ или пар под сильным давлением и при высокой температуре подается в цилиндр. Поршень при этом перемещается, а газ постепенно охлаждается, после чего давление в системе становится почти равным атмосферному.

Отработавший свое газ выводится из цилиндра, в который немедленно подается очередная порция. Для возврата поршня в начальное положение применяют маховики, которые крепят на вал кривошипа. Подобные тепловые двигатели могут обеспечивать одинарное или двойное действие. В двигателях с двойным действием на один оборот вала приходится две стадии рабочего хода поршня, в установках одинарного действия поршень совершает за то же время один ход.

Отличие двигателей внутреннего сгорания от описанных выше систем состоит в том, что горячий газ здесь получается при сжигании топливно-воздушной смеси непосредственно в цилиндре, а не вне его. Подвод очередной порции горючего и

Разработка и производство авиационных турбореактивных двигателей сегодня является одной из наиболее наукоемких и высокоразвитых в научном и техническом отношении промышленных отраслей. Помимо России, только США, Англия и Франция владеют полным циклом создания и выпуска авиационных газотурбинных двигателей.

В конце прошлого столетия на первый план вышел ряд факторов, оказывающих сильное влияние на перспективы мирового авиационного двигателестроения – рост стоимости, увеличение полных сроков разработки и цены авиадвигателей. Рост стоимостных показателей авиадвигателей приобретает экспоненциальный характер, при этом от поколения к поколению становится больше доля поисковых исследований по созданию опережающего научно-технического задела. Для авиационного двигателестроения США при переходе от четвертого к пятому поколению эта доля возросла по затратам с 15% до 60%, а по срокам увеличилась почти в два раза. Ситуация в России усугубилась известными политическими событиями и системным кризисом в начале ХХI века.


США на госбюджетной основе сегодня проводят национальную программу ключевых технологий авиационного двигателестроения IНРТЕТ. Конечная цель – к 2015 г. достигнуть монопольного положения, вытеснив с рынка всех остальных. Что делает сегодня Россия, чтобы не допустить этого?

Руководитель ЦИАМ В. Скибин в конце прошлого года сказал: «У нас мало времени, но много работы». Однако НИР, которые выполняет головной институт, не находят места в перспективных планах. При создании Федеральной целевой программы развития гражданской авиатехники до 2020 г. мнения ЦИАМ даже не спросили. «В проекте ФЦП мы увидели очень серьезные вопросы, начиная с постановки задач. Мы видим непрофессионализм. В проекте ФЦП-2020 на науку планируется выделить всего 12%, 20% – на двигателестроение. Этого совсем недостаточно. Институты для обсуждения проекта ФЦП даже не пригласили», – подчеркнул В. Скибин.


Андрей Реус. Юрий Елисеев. Вячеслав Богуслаев.

СМЕНА ПРИОРИТЕТОВ

Федеральной программой «Развитие гражданской авиационной техники России на 2002-2010 гг. и на период до 2015 г.» предусматривалось создание целого ряда новых двигателей. ЦИАМ на основе прогноза развития рынка авиационной техники разработал технические задания на конкурсную разработку технических предложений по созданию двигателей нового поколения, предусмотренных указанной ФЦП: ТРДД тягой 9000-14000 кгс для ближне-среднемагистрального самолета, ТРДД тягой 5000-7000 кгс для регионального самолета, ГТД мощностью 800 л.с. для вертолетов и легких самолетов, ГТД мощностью 500 л.с. для вертолетов и легких самолетов, авиационного поршневого двигателя (АПД) мощностью 260-320 л.с. для вертолетов и легких самолетов и АПД мощностью 60-90 л.с. для ультралегких вертолетов и самолетов.

Одновременно было принято решение о реорганизации отрасли. Реализация федеральной программы «Реформирование и развитие оборонно-промышленного комплекса (2002-2006 гг.)» предусматривала проведение работ в два этапа. На первом этапе (2002-2004 гг.) планировалось осуществить комплекс мероприятий по реформированию системообразующих интегрированных структур. При этом в авиационной промышленности предполагалось создание девятнадцати интегрированных структур, в том числе ряда структур по двигателестроительным организациям: ОАО «Корпорация «Комплекс имени Н.Д. Кузнецова», ОАО «Пермский центр двигателестроения», ФГУП «Салют», ОАО «Корпорация «Воздушные винты».

К этому времени отечественные двигателисты уже поняли, что надеяться на кооперацию с иностранными предприятиями бессмысленно, а в одиночку выживать очень сложно, и начали достаточно активно сколачивать собственные коалиции, которые позволили бы занять достойное место в будущей интегрированной структуре. Авиационное моторостроение в России традиционно было представлено несколькими «кустами». Во главе стояли КБ, на следующем уровне – серийные предприятия, за ними – агрегатчики. С переходом к рыночной экономике лидирующая роль стала переходить к серийным заводам, получавшим реальные деньги от экспортных контрактов – ММПП «Салют», ММП им. Чернышева, УМПО, «Мотор Сич».

ММПП «Салют» в 2007 г. превратилось в интегрированную структуру ФГУП «Научно-производственный центр газотурбостроения «Салют». В его состав вошли филиалы в Москве, Московской области и Бендерах. Контрольные и блокирующие пакеты акций акционерных обществ НПП «Темп», КБ «Электроприбор», НИИТ, ГМЗ «Агат» и СП «Топаз» находились в управлении «Салюта». Огромным преимуществом стало создание собственного конструкторского бюро. Это КБ быстро доказало, что способно решать серьезные задачи. В первую очередь – создание модернизированных двигателей АЛ-31ФМ и разработку перспективного двигателя для самолетов пятого поколения. Благодаря экспортным заказам «Салют» провел масштабную модернизацию производства и выполнил целый ряд НИОКР.

Вторым центром притяжения стало НПО «Сатурн», по сути, первая в России вертикально интегрированная компания в области авиационного двигателестроения, объединившая конструкторское бюро в Москве и серийный завод в Рыбинске. Но в отличие от «Салюта» это объединение не было подкреплено необходимыми собственными финансовыми ресурсами. Поэтому во второй половине 2007 г. «Сатурн» начал сближение с УМПО, которое имело достаточное количество экспортных заказов. Вскоре в печати появились сообщения, что менеджмент «Сатурна» стал обладателем контрольного пакета акций УМПО, ожидалось полное слияние двух компаний.

С приходом нового руководства еще одним центром притяжения стало ОАО «Климов». По сути, это конструкторское бюро. Традиционными серийными заводами, производящим продукцию этого КБ, являются московское МПП им. Чернышева и запорожский «Мотор Сич». Московское предприятие имело достаточно крупные экспортные заказы на двигатели РД-93 и РД-33МК, запорожцы оставались практически единственным предприятием, поставляющим двигатели ТВ3-117 для российских вертолетов.

«Салют» и «Сатурн» (если считать вместе с УМПО) серийно выпускали двигатели АЛ-31Ф, один из главных источников экспортных доходов. У обоих предприятий была гражданская продукция – SaM-146 и Д-436, но оба этих мотора имеют нероссийское происхождение. «Сатурн» производит также двигатели для беспилотных летательных аппаратов. На «Салюте» такой двигатель есть, а вот заказов на него пока нет.

У «Климова» в области двигателей для легких истребителей и для вертолетов конкурентов в России нет, а вот на поприще создания двигателей для учебно-тренировочных самолетов конкурировали все. ММПП им. Чернышева совместно с ТМКБ «Союз» создавал ТРДД РД-1700, «Сатурн» по заказу Индии – АЛ-55И, «Салют» в кооперации с «Мотор Сич» выпускает АИ-222-25. Реально только последний устанавливается на серийные самолеты. В области ремоторизации Ил-76 «Сатурн» конкурировал с пермским ПС-90, который остается единственным двигателем, который сегодня устанавливается на российские магистральные самолеты. Однако пермскому «кусту» не везло с акционерами: некогда мощное предприятие переходило из рук в руки, за чехардой смены непрофильных собственников растрачивалась мощь. Процесс создания пермского центра двигателестроения затянулся, наиболее талантливые специалисты перебрались в Рыбинск. Сейчас Объединенная двигателестроительная корпорация (ОДК) плотно занимаемся вопросами оптимизации структуры управления пермским «кустом». Пока идет присоединение к ПМЗ ряда технологически связанных предприятий, которые от него в прошлом были отделены. С американскими партнерами из Pratt & Whitney обсуждается проект создания единой структуры с участием ПМЗ и КБ «Авиадвигатель». При этом до начала апреля текущего года ОДК ликвидирует «лишнее звено» в управлении своими пермскими активами – пермское представительство корпорации, ставшее правопреемником ЗАО «Управляющая компания «Пермский моторостроительный комплекс» (УК ПМК), которое с 2003 по 2008 гг. управляло предприятиями бывшего холдинга «Пермские моторы».


АИ-222-25.

Наиболее проблемным оставались вопросы создания двигателя в классе тяги 12000-14000 кгс для перспективного ближне-среднемагистрального лайнера, который должен прийти на смену Ту-154. Основная борьба развернулась между пермскими моторостроителями и украинским «Прогрессом». Пермяки предлагали создать двигатель нового поколения ПС-12, их конкуренты предлагали проект Д-436-12. Меньший технический риск при создании Д-436-12 с лихвой компенсировался рисками политическими. Закрадывалась крамольная мысль, что самостоятельный прорыв в гражданском сегменте стал маловероятен. Рынок гражданских реактивных двигателей поделен сегодня еще более жестко, чем рынок летательных аппаратов. Две американские и две европейские компании закрывают все возможные ниши, активно кооперируясь друг с другом.

Несколько предприятий российского двигателестроения остались в стороне от борьбы. Новые разработки АМНТК «Союз» оказались не нужны, самарские предприятия не имели конкурентов на внутреннем рынке, но и рынка для них практически не было. Самарские авиационные двигатели работают на самолетах стратегической авиации, которых и в советское время строилось не так много. В начале 1990-х был разработан перспективный ТВВД НК-93, но он оказался не востребован в новых условиях.

Сегодня, по словам генерального директора ОАО «ОПК «Оборонпром» Андрея Реуса, ситуация в Самаре поменялась кардинально. Самарский «куст» план 2009 г. выполнил полностью. В 2010 г. планируется завершить объединение трех предприятий в единое НПО, а лишние площади продать. По оценке А. Реуса «кризисная ситуация для Самары закончилась, начался нормальный режим работы. Уровень производительности остается ниже, чем в целом по отрасли, но позитивные изменения в производственной и финансовой сферах налицо. В 2010 г. ОДК планирует вывести самарские предприятия на безубыточную работу».

Остается еще и проблема малой и спортивной авиации. Как ни странно, им тоже нужны двигатели. Сегодня из отечественных моторов можно выбрать только один – поршневой М-14 и его производные. Эти двигатели выпускают в Воронеже.

В августе 2007 г. на совещании в Санкт-Петербурге по развитию двигателестроения тогдашний президент РФ Владимир Путин дал поручение создавать четыре холдинга, которые затем объединились бы в одну компанию. Тогда же В. Путин подписал Указ об объединении «Салюта» с ФГУП «Омское моторостроительное объединение имени П.И. Баранова». Срок присоединения к «Салюту» омского завода периодически менялся. В 2009 г. этого не произошло потому, что омский завод имел существенные долговые обязательства, а «Салют» настаивал, чтобы задолженность была погашена. И государство ее погасило, выделив в декабре прошлого года 568 млн. рублей. По мнению руководства Омской области теперь препятствий для объединения нет, и в первой половине 2010 г. это случится.

Из трех оставшихся холдингов по прошествии нескольких месяцев было признано целесообразным создать одно объединение. В октябре 2008 г. премьер-министр России Владимир Путин поручил передать «Оборонпрому» государственные пакеты акций десяти предприятий и обеспечить контрольный пакет акций создаваемой ОДК в целом ряде предприятий, в том числе в «Авиадвигателе», НПО «Сатурн», «Пермских моторах», ПМЗ, УМПО, «Моторостроителе», СНТК им. Кузнецова и ряда других. Эти активы перешли под управление дочерней компании «Оборонпрома» – Объединенной двигателестроительной корпорации. Андрей Реус аргументировал данное решение так: «если бы мы пошли по пути промежуточного этапа создания нескольких холдингов, то никогда не договорились бы делать одно изделие. Четыре холдинга – это четыре модельных ряда, которые никогда бы не удалось привести к единому знаменателю. Я уже не говорю о государственной помощи! Можно себе только представить, что бы происходило в борьбе за бюджетные средства. В тот же проект по созданию двигателя для МС-21 вовлечено НПП «Мотор», КБ «Авиадвигатель», Уфимское моторостроительное производственное объединение, Пермский моторный завод, самарский «куст». НПО «Сатурн», пока объединения не было, отказывался работать над проектом, а сейчас – активный участник процесса».


АЛ-31ФП.

Сегодня стратегической целью ОДК является «восстановление и поддержка современной российской инженерной школы в сфере создания газотурбинных двигателей». ОДК должна к 2020 г. закрепиться в пятерке мировых производителей в сфере ГТД. К этому моменту 40% продаж продукции ОДК должно быть ориентировано на мировой рынок. При этом необходимо обеспечить четырехкратный, а возможно и пятикратный рост производительности труда и обязательное включение сервисного обслуживания в систему продаж двигателей. Приоритетными проектами ОДК являются создание двигателя SaM-146 для российского регионального самолета SuperJet100, нового двигателя для гражданской авиации, двигателя для военной авиации, а также двигателя для перспективного скоростного вертолета.

ДВИГАТЕЛЬ ПЯТОГО ПОКОЛЕНИЯ ДЛЯ БОЕВОЙ АВИАЦИИ

Программу создания ПАК ФА в 2004 г. разбили на два этапа. Первый этап предусматривает установку на самолет двигателя «117С» (сегодня его относят к поколению 4+), второй этап предполагал создание нового двигателя тягой 15-15,5 тонн. В эскизном проекте ПАК ФА пока «прописан» сатурновский двигатель.

В конкурсе, объявленном Минобороны РФ, также были предусмотрены два этапа: ноябрь 2008 г. и май-июнь 2009 г. «Сатурн» почти на год отставал от «Салюта» по предоставлению результатов работ по элементам двигателя. «Салют» все сделал вовремя, получил заключение комиссии.

Видимо, такая ситуация побудила ОДК в январе 2010 г. все-таки предложить «Салюту» создать двигатель пятого поколения совместно. Была достигнута предварительная договоренность о разделении объема работ примерно пятьдесят на пятьдесят. Юрий Елисеев согласен работать с ОДК на паритетных основаниях, но считает, что идеологом создания нового двигателя должен быть именно «Салют».

ММПП «Салют» уже создал двигатели АЛ-31ФМ1 (он принят на вооружение, выпускается серийно) и АЛ-31ФМ2, перешел к стендовой отработке АЛ-31ФМ3-1, за которым последует АЛ-31ФМ3-2. Каждый новый двигатель отличается повышенной тягой и лучшими ресурсными показателями. АЛ-31ФМ3-1 получила новый трехступенчатый вентилятор и новую камеру сгорания, а тяга достигла 14500 кгс. Следующий шаг предусматривает рост тяги до 15200 кгс.

По мнению Андрея Реуса «тема ПАК ФА ведет к очень тесной кооперации, что можно рассматривать как базу для интеграции». При этом он не исключает, что в перспективе будет создана единая структура в двигателестроении.


Программа SaM-146 – пример успешного сотрудничества в сфере высоких технологий между РФ и Францией.

Свои предложения по новому двигателю для самолета МС-21 несколько лет назад представили ОАО «Авиадвигатель» (ПД-14, ранее известный как ПС-14) и «Салют» совместно с украинскими «Мотор Сич» и «Прогресс» (СПМ-21). Первый был совершенно новой работой, а второй планировалось создать на базе Д-436, что позволяло существенно сократить сроки и снизить технические риски.

В начале прошлого года ОАК и НПК «Иркут» наконец-то объявили тендер на двигатели для самолета МС-21, выдав техническое задание нескольким зарубежным двигателестроительным фирмам (Pratt & Whitney, CFM International) и украинским «Мотор Сич» и «Ивченко-Прогресс» в кооперации с российским «Салютом». Создатель российского варианта двигателя уже был определен – ОДК.

В семействе разрабатываемых моторов есть несколько тяжелых двигателей с большей тягой, чем необходимо для МС-21. Прямого финансирования таких изделий нет, но в перспективе двигатели повышенной тяги будут иметь спрос, в том числе и для замены ПС-90А на летающих сейчас самолетах. Все двигатели большей тяги планируется выполнить редукторными.

Двигатель с тягой 18000 кгс может потребоваться и для перспективного легкого широкофюзеляжного самолета (ЛШС). Двигатели с такой тягой необходимы и для МС-21-400.

Пока же НПК «Иркут» принял решение оснастить первый МС-21 двигателями PW1000G. Этот мотор американцы обещают подготовить к 2013 г. и видимо у «Иркута» уже есть основания не бояться запретов Госдепа США и того, что таких двигателей может просто не хватить на всех желающих в случае принятия решение о ремоторизации самолетов Boeing 737 и Airbus A320.

В начале марта ПД-14 прошел «вторые ворота» на совещании в ОДК. Это означает сформированную кооперацию по изготовлению газогенератора, предложения по кооперации по выпуску двигателя, а также детальный анализ рынка. ПМЗ будет изготавливать камеру сгорания и турбину высокого давления. Значительную часть компрессора высокого давления, а также компрессор низкого давления будет выпускать УМПО. По турбине низкого давления возможны варианты кооперации с «Сатурном», не исключена и кооперация с «Салютом». Сборка мотора будет производиться в Перми.


В эскизном проекте ПАК ФА пока «прописан» сатурновский двигатель.

ДВИГАТЕЛИ С ОТКРЫТЫМ РОТОРОМ

Несмотря на то, что российские самолетчики пока не признают открытый ротор, двигателисты уверены, что у него есть преимущества и «самолетчики дозреют до этого двигателя». Поэтому сегодня Пермь ведет соответствующие работы. У запорожцев уже есть серьезный опыт в данном направлении, связанный с двигателем Д-27, и в семействе двигателей с открытым ротором разработку этого узла, вероятно, отдадут запорожцам.

До МАКС-2009 работы по Д-27 на московском «Салюте» были заморожены: не было финансирования. 18 августа 2009 г. Минобороны РФ подписало протокол о внесении изменений в соглашение между правительствами России и Украины по самолету Ан-70, «Салют» начал активные работы по изготовлению деталей и узлов. На сегодняшний день есть дополнительное соглашение на поставку трех комплектов и узлов к двигателю Д-27. Работы финансирует МО РФ, агрегаты, построенные «Салютом», будут переданы ГП «Ивченко-Прогресс» для завершения государственных испытаний двигателя. Общая координация работ по данной теме поручена Министерству промышленности и торговли Российской Федерации.

Была также идея применения двигателей Д-27 на бомбардировщиках Ту-95МС и Ту-142, но ОАО «Туполев» таких вариантов пока не рассматривает, возможность установки Д-27 на самолет А-42Э прорабатывался, но затем его сменил ПС-90.


В начале прошлого года ОАК и НПК «Иркут» объявили тендер на двигатели для самолета МС-21.

ДВИГАТЕЛИ ДЛЯ ВЕРТОЛЕТОВ

Сегодня большинство российских вертолетов оснащены двигателями запорожского производства, а для тех моторов, которые собирает «Климов», газогенераторы все равно поставляет «Мотор Сич». Это предприятие сейчас значительно превосходит «Климов» по количеству выпускаемых вертолетных двигателей: украинская компания, по имеющимся данным, в 2008 г. поставила в Россию 400 моторов, тогда как ОАО «Климов» произвел их в объеме около 100 ед.

За право стать головным предприятием по выпуску вертолетных двигателей несколько лет боролись «Климов» и ММП им. В.В. Чернышева. Производство двигателей ТВ3-117 планировалось перенести в Россию, построив новый завод и отобрав у «Мотор Сич» основной источник доходов. При этом «Климов» был одним из активных лоббистов программы импортозамещения. В 2007 г. финальную сборку двигателей ВК-2500 и ТВ3-117 предполагалось сосредоточить на ММП им. В.В. Чернышева.

Сегодня производство, капремонт и послепродажное обслуживание вертолетных двигателей ТВ3-117 и ВК-2500 ОДК планирует поручить УМПО. Также в Уфе рассчитывают запустить в серию «климовский» ВК-800В. 90% необходимых для этого финансовых ресурсов предполагается привлечь по федеральным целевым программам «Развитие гражданской авиационной техники», «Импортозамещение» и «Развитие оборонно-промышленного комплекса».


Двигатели Д-27.

Производство газогенераторов на смену украинским должно быть налажено на УМПО с 2013 г. До этого времени газогенераторы будут по-прежнему закупаться на «Мотор Сич». ОДК планирует до 2013 г. использовать мощности ОАО «Климов» «по максимуму». То, что не сможет сделать «Климов», будет заказываться на «Мотор Сич». Но уже в 2010-2011 гг. планируется минимизировать закупки ремкомплектов на «Мотор Сич». С 2013 г., когда производство двигателей на «Климове» будет свернуто, петербургское предприятие займется реструктуризацией своих площадей.

В итоге «Климов» получил в ОДК статус головного разработчика вертолетных двигателей и турбореактивных двигателей в классе форсажной тяги до 10 тс. Приоритетными направлениями сегодня являются проведение ОКР по двигателю ТВ7-117В для вертолета Ми-38, модернизация двигателя ВК-2500 в интересах МО РФ, завершение ОКР по РД-33МК. Предприятие также принимает участие в разработке двигателя пятого поколения по программе ПАК ФА.

В конце декабря 2009 г. проектный комитет ОДК одобрил проект «Климова» по строительству нового конструкторско-производственного комплекса с высвобождением площадок в центре Санкт-Петербурга.

ММП им. В.В. Чернышева теперь будет вести серийное производство единственного вертолетного двигателя – ТВ7-117В. Этот двигатель создан на базе самолетного ТВД ТВ7-117СТ для самолета Ил-112В, а его производство также уже осваивает это московское предприятие.

В ответ «Мотор Сич» в октябре прошлого года предложил ОДК создать совместную управляющую компанию. «Управляющая компания может быть переходным вариантом дальнейшей интеграции», – пояснил председатель совета директоров ОАО «Мотор Сич» Вячеслав Богуслаев. По мнению Богуслаева, ОДК вполне могло бы приобрести до 11% акций «Мотор Сич», которые есть в свободном обращении на рынке. В марте 2010 г. «Мотор Сич» сделал еще один шаг, предложив Казанскому моторостроительному производственному объединению открыть на освободившихся у него мощностях производство двигателей для легкого многоцелевого вертолета «Ансат». МС-500 – аналог двигателя PW207К, которым сегодня оснащаются вертолеты «Ансат». По условиям контрактов МО РФ российская техника должна быть оснащена отечественными комплектующими, а исключение для «Ансата» сделано потому, что реальной замены канадцам пока нет. Эту нишу могло бы занять КМПО с двигателем МС-500, но пока вопрос упирается в стоимость. Цена МС-500 – около $400 тыс., а PW207К стоит $288 тыс. Тем не менее, в начале марта стороны подписали программный контракт с намерением заключить лицензионное соглашение (50:50). КМПО, несколько лет назад вложившее большие средства в создание украинского двигателя

АИ-222 для самолета Ту-324, в данном случае хочет защитить себя лицензионным соглашением и получить гарантию возврата инвестиций.

Однако холдинг «Вертолеты России» в качестве силовой установки «Ансата» видит климовский двигатель ВК-800, а вариант с двигателем МС-500В «рассматривается в числе прочих». С точки зрения военных что канадский, что украинский двигатель – одинаково иностранные.

В целом на сегодняшний день ОДК никаких шагов по объединению с запорожскими предприятиями предпринимать не намерена. «Мотор Сич» сделал ряд предложений по совместному выпуску двигателей, но они идут вразрез с собственными планами ОДК. Поэтому «правильно выстроенные договорные отношения с «Мотор Сич» на сегодняшний день нас вполне устраивают», – отметил Андрей Реус.


ПС-90А2.

В 2009 г. ПМЗ построил 25 новых двигателей ПС-90, темп серийного производства сохранился на уровне 2008 г. По словам управляющего директора ОАО «Пермский моторный завод» Михаила Дическула «завод выполнил все контрактные обязательства, не было сорвано ни одного заказа». В 2010 г. ПМЗ планирует начать производство двигателей ПС-90А2, который прошел летные испытания на самолете Ту-204 в Ульяновске и получил сертификат типа в конце прошлого года. В текущем году запланирована постройка шести таких моторов.

Д-436-148

Двигатели Д-436-148 для самолетов Ан-148 поставляют сегодня «Мотор Сич» совместно с «Салютом». В программе киевского авиационного завода «Авиант» на 2010 г. заложен выпуск четырех Ан-148, Воронежского авиазавода – 9-10 машин. Для этого нужно поставить около 30 двигателей с учетом одного-двух резервных в России и на Украине.


Д-436-148.

SаМ-146

По двигателю SaM-146 проведено более 6200 часов испытаний, из них свыше 2700 часов – в полете. По программе его сертификации выполнено свыше 93% объема запланированных испытаний. Предстоит дополнительно испытать двигатель на заброс средней стайной птицы, на обрыв лопатки вентилятора, проверить начальное техническое обслуживание, трубопроводы, датчики засорения маслофильтра, трубопроводы в условиях солевого тумана.


SaM-146.

Получение европейского сертификата (EASA) на типовую конструкцию двигателя запланировано на май. После этого двигатель должен будет получить валидацию Авиарегистра Межгосударственного авиационного комитета.

Управляющий директор «Сатурна» Илья Федоров в марте текущего года еще раз заявил, что «никаких технических проблем для серийной сборки двигателя SaM146 и его ввода в эксплуатацию нет».

Оборудование в Рыбинске позволяет выпускать до 48 двигателей в год, а через три года их выпуск можно увеличить до 150. Первая коммерческая поставка двигателей запланирована на июнь 2010 г. Потом – по два двигателя каждый месяц.

В настоящее время «Мотор Сич» изготавливает двигатели Д-18Т серии 3 и работает над двигателем Д-18Т серии 4, но при этом предприятие старается вести создание модернизированного двигателя Д-18Т серии 4 поэтапно. Ситуация с разработкой Д-18Т серии 4 усугубляется неопределенностью судьбы модернизированного самолета Ан-124-300.

Двигатели АИ-222-25 для самолетов Як-130 выпускают «Салют» и «Мотор Сич». При этом финансирование российской части работ в прошлом году по этому мотору практически отсутствовало – «Салют» не получал денег по полгода. В рамках кооперации приходилось переходить на бартер: менять модули Д-436 на модули АИ-222 и «спасать программы самолетов Ан-148 и Як-130».

Форсажный вариант двигателя АИ-222-25Ф уже проходит испытания, начать государственные испытания планируется в конце 2010 г. или в начале 2011 г. Подписано трехстороннее соглашение между ЗМКБ «Прогресс», ОАО «Мотор Сич» и ФГУП «ММПП «Салют» по продвижению этого двигателя на мировой рынок с долевым участием каждой из сторон.

В прошлом году практически был завершен процесс формирования окончательной структуры ОДК. За 2009 г. совокупный объем выручки предприятий ОДК составил 72 млрд. руб. (в 2008 г. – 59 млрд. руб.). Существенный объем господдержки позволил большинству предприятий значительно сократить кредиторскую задолженность, а также обеспечить расчеты с поставщиками комплектующих.

На поле авиационного двигателестроения России сегодня осталось три реальных игрока – ОДК, «Салют» и «Мотор Сич». Как будет развиваться ситуация дальше – покажет время.

Ctrl Enter

Заметили ошЫ бку Выделите текст и нажмите Ctrl+Enter

Интересная статейка о прошлом, настоящем и будущем нашей ракетной отрасли и перспектив полетов в космос.

Создатель лучших в мире жидкостных ракетных двигателей академик Борис Каторгин объясняет, почему американцы до сих пор не могут повторить наших достижений в этой области и как сохранить советскую фору в будущем .

21 июня 2012 года на Петербургском экономическом форуме прошло награждение лауреатов премии «Глобальная энергия». Авторитетная комиссия отраслевых экспертов из разных стран выбрала три заявки из представленных 639 и назвала лауреатов премии 2012 года, которую уже привычно называют «нобелевкой для энергетиков». В итоге 33 миллиона премиальных рублей в этом году разделили известный изобретатель из Великобритании профессор Родней Джон Аллам и двое наших выдающихся ученых — академики РАН Борис Каторгин и Валерий Костюк .

Все трое имеют отношение к созданию криогенной техники, исследованию свойств криогенных продуктов и их применению в различных энергетических установках. Академик Борис Каторгин был награжден «за разработки высокоэффективных жидкостных ракетных двигателей на криогенных топливах, которые обеспечивают при высоких энергетических параметрах надежную работу космических систем в целях мирного использования космоса». При непосредственном участии Каторгина, более пятидесяти лет посвятившего предприятию ОКБ-456, известному сейчас как НПО «Энергомаш», создавались жидкостные ракетные двигатели (ЖРД), рабочие характеристики которых и теперь считаются лучшими в мире. Сам Каторгин занимался разработкой схем организации рабочего процесса в двигателях, смесеобразованием компонентов горючего и ликвидацией пульсации в камере сгорания. Известны также его фундаментальные работы по ядерным ракетным двигателям (ЯРД) с высоким удельным импульсом и наработки в области создания мощных непрерывных химических лазеров.


В самые тяжелые для российских наукоемких организаций времена, с 1991-го по 2009 год, Борис Каторгин возглавлял НПО «Энергомаш», совмещая должности генерального директора и генерального конструктора, и умудрился не только сохранить фирму, но и создать ряд новых двигателей. Отсутствие внутреннего заказа на двигатели заставило Каторгина искать заказчика на внешнем рынке. Одним из новых двигателей стал РД-180, разработанный в 1995 году специально для участия в тендере, организованном американской корпорацией Lockheed Martin, выбиравшей ЖРД для модернизируемого тогда ракетоносителя «Атлас». В результате НПО «Энергомаш» подписало договор на поставку 101 двигателя и к началу 2012 года уже поставило в США более 60 ЖРД, 35 из которых успешно отработали на «Атласах» при выводе спутников различного назначения.


Перед вручением премии «Эксперт» побеседовал с академиком Борисом Каторгиным о состоянии и перспективах развития жидкостных ракетных двигателей и выяснил, почему базирующиеся на разработках сорокалетней давности двигатели до сих пор считаются инновационными, а РД-180 не удалось воссоздать на американских заводах.

Борис Иванович, в чем именно ваша заслуга в создании отечественных жидкостных реактивных двигателей, и теперь считающихся лучшими в мире?


— Чтобы объяснить это неспециалисту, наверное, нужно особое умение. Для ЖРД я разрабатывал камеры сгорания, газогенераторы; в целом руководил созданием самих двигателей для мирного освоения космического пространства. (В камерах сгорания происходит смешение и горение топлива и окислителя и образуется объем раскаленных газов, которые, выбрасываясь затем через сопла, создают собственно реактивную тягу; в газогенераторах также сжигается топливная смесь, но уже для работы турбонасосов, которые под огромным давлением нагнетают топливо и окислитель в ту же камеру сгорания.« Эксперт» .)


Вы говорите о мирном освоении космоса, хотя очевидно, что все двигатели тягой от нескольких десятков до 800 тонн, которые создавались в НПО « Энергомаш», предназначались прежде всего для военных нужд.


— Нам не пришлось сбросить ни одной атомной бомбы, мы не доставили на наших ракетах ни одного ядерного заряда к цели, и слава богу. Все военные наработки пошли в мирный космос. Мы можем гордиться огромным вкладом нашей ракетно-космической техники в развитие человеческой цивилизации. Благодаря космонавтике родились целые технологические кластеры: космическая навигация, телекоммуникации, спутниковое телевидение, системы зондирования.


Двигатель для межконтинентальной баллистической ракеты Р-9, над которым вы работали, потом лег в основу чуть ли не всей нашей пилотируемой программы.


— Еще в конце 1950-х я проводил расчетно-экспериментальные работы для улучшения смесеобразования в камерах сгорания двигателя РД-111, который предназначался для той самой ракеты. Результаты работы до сих пор применяются в модифицированных двигателях РД-107 и РД-108 для той же ракеты «Союз», на них было совершено около двух тысяч космических полетов, включая все пилотируемые программы.


Два года назад я брал интервью у вашего коллеги, лауреата « Глобальной энергии» академика Александра Леонтьева. В разговоре о закрытых для широкой публики специалистах, коим Леонтьев сам когда- то был, он упомянул Виталия Иевлева, тоже много сделавшего для нашей космической отрасли.


— Многие работавшие на оборонку академики были засекречены — это факт. Сейчас многое рассекречено — это тоже факт. Александра Ивановича я знаю прекрасно: он работал над созданием методик расчета и способов охлаждения камер сгорания различных ракетных двигателей. Решить эту технологическую задачу было нелегко, особенно когда мы начали максимально выжимать химическую энергию топливной смеси для получения максимального удельного импульса, повышая среди прочих мер давление в камерах сгорания до 250 атмосфер. Возьмем самый мощный наш двигатель — РД-170. Расход топлива с окислителем — керосином с жидким кислородом, идущим через двигатель, — 2,5 тонны в секунду. Тепловые потоки в нем достигают 50 мегаватт на квадратный метр — это огромная энергия. Температура в камере сгорания — 3,5 тысячи градусов Цельсия. Надо было придумать специальное охлаждение для камеры сгорания, чтобы она могла расчетно работать и выдерживала тепловой напор. Александр Иванович как раз этим и занимался, и, надо сказать, потрудился он на славу. Виталий Михайлович Иевлев — член-корреспондент РАН, доктор технических наук, профессор, к сожалению, довольно рано умерший, — был ученым широчайшего профиля, обладал энциклопедической эрудицией. Как и Леонтьев, он много работал над методикой расчета высоконапряженных тепловых конструкций. Работы их где-то пересекались, где-то интегрировались, и в итоге получилась прекрасная методика, по которой можно рассчитать теплонапряженность любых камер сгорания; сейчас, пожалуй, пользуясь ею, это может сделать любой студент. Кроме того, Виталий Михайлович принимал активное участие в разработке ядерных, плазменных ракетных двигателей. Здесь наши интересы пересекались в те годы, когда «Энергомаш» занимался тем же.


В нашей беседе с Леонтьевым мы затронули тему продажи энергомашевских двигателей РД-180 в США, и Александр Иванович рассказал, что во многом этот двигатель — результат наработок, которые были сделаны как раз при создании РД-170, и в каком- то смысле его половинка. Что это — действительно результат обратного масштабирования?


— Любой двигатель в новой размерности — это, конечно, новый аппарат. РД-180 с тягой 400 тонн действительно в два раза меньше РД-170 с тягой 800 тонн. У РД-191, предназначенного для нашей новой ракеты «Ангара», тяга и вовсе 200 тонн. Что же общего у этих двигателей? Все они имеют по одному турбонасосу, но камер сгорания у РД-170 четыре, у «американского» РД-180 — две, у РД-191 — одна. Для каждого двигателя нужен свой турбонасосный агрегат — ведь если однокамерный РД-170 потребляет примерно 2,5 тонны топлива в секунду, для чего был разработан турбонасос мощностью 180 тысяч киловатт, в два с лишним раза превосходящий, например, мощность реактора атомного ледокола «Арктика», то двухкамерный РД-180 — лишь половину, 1,2 тонны. В разработке турбонасосов для РД-180 и РД-191 я участвовал напрямую и в то же время руководил созданием этих двигателей в целом.


Камера сгорания, значит, на всех этих двигателях одна и та же, только количество их разное?


— Да, и это наше главное достижение. В одной такой камере диаметром всего 380 миллиметров сгорает чуть больше 0,6 тонны топлива в секунду. Без преувеличения, эта камера — уникальное высокотеплонапряженное оборудование со специальными поясами защиты от мощных тепловых потоков. Защита осуществляется не только за счет внешнего охлаждения стенок камеры, но и благодаря хитроумному способу «выстилания» на них пленки горючего, которое, испаряясь, охлаждает стенку. На базе этой выдающейся камеры, равной которой в мире нет, мы изготавливаем лучшие свои двигатели: РД-170 и РД-171 для «Энергии» и «Зенита», РД-180 для американского «Атласа» и РД-191 для новой российской ракеты «Ангара».


— « Ангара» должна была заменить « Протон- М» еще несколько лет назад, но создатели ракеты столкнулись с серьезными проблемами, первые летные испытания неоднократно откладывались, и проект вроде бы продолжает буксовать.


— Проблемы действительно были. Сейчас принято решение о запуске ракеты в 2013 году. Особенность «Ангары» в том, что на основе ее универсальных ракетных модулей можно создать целое семейство ракетоносителей грузоподъемностью от 2,5 до 25 тонн для вывода грузов на низкую околоземную орбиту на базе универсального же кислородно-керосинового двигателя РД-191. «Ангара-1″ имеет один двигатель, «Ангара-3″ — три с общей тягой 600 тонн, у «Ангары-5″ будет 1000 тонн тяги, то есть она сможет выводить на орбиту больше грузов, чем «Протон». К тому же вместо очень токсичного гептила, который сжигается в двигателях «Протона», мы используем экологически чистое топливо, после сгорания которого остаются лишь вода да углекислый газ.


Как получилось, что тот же РД-170, который создавался еще в середине 1970- х, до сих пор остается, по сути, инновационным продуктом, а его технологии используются в качестве базовых для новых ЖРД?


— Похожая история случилась с самолетом, созданным после Второй мировой Владимиром Михайловичем Мясищевым(дальний стратегический бомбардировщик серии М, разработка московского ОКБ-23 1950-х годов. — « Эксперт» ). По многим параметрам самолет опережал свое время лет эдак на тридцать, и элементы его конструкции потом заимствовали другие авиастроители. Так и здесь: в РД-170 очень много новых элементов, материалов, конструкторских решений. По моим оценкам, они не устареют еще несколько десятилетий. В этом заслуга прежде всего основателя НПО «Энергомаш» и его генерального конструктора Валентина Петровича Глушко и членкора РАНВиталия Петровича Радовского, возглавившего фирму после смерти Глушко. (Отметим, что лучшие в мире энергетические и эксплуатационные характеристики РД-170 во многом обеспечиваются благодаря решению Каторгиным проблемы подавления высокочастотной неустойчивости горения за счет разработки антипульсационных перегородок в той же камере сгорания. — « Эксперт» .) А двигатель РД-253 первой ступени для ракетоносителя «Протон»? Принятый на вооружение еще в 1965 году, он настолько совершенен, что до сих пор никем не превзойден. Именно так учил конструировать Глушко — на пределе возможного и обязательно выше среднемирового уровня. Важно помнить и другое: страна инвестировала в свое технологическое будущее. Как было в Советском Союзе? Министерство общего машиностроения, в ведении которого, в частности, находились космос и ракеты, только на НИОКР тратило 22 процента своего огромного бюджета — по всем направлениям, включая двигательное. Сегодня объем финансирования исследований намного меньше, и это говорит о многом.


Не означает ли достижение этими ЖРД неких совершенных качеств, причем случилось это полвека назад, что ракетный двигатель с химическим источником энергии в каком- то смысле изживает себя: основные открытия сделаны и в новых поколениях ЖРД, сейчас речь идет скорее о так называемых поддерживающих инновациях?


— Безусловно нет. Жидкостные ракетные двигатели востребованы и будут востребованы еще очень долго, потому что никакая другая техника не в состоянии более надежно и экономично поднять груз с Земли и вывести его на околоземную орбиту. Они безопасны с точки зрения экологии, особенно те, что работают на жидком кислороде и керосине. Но для полетов к звездам и другим галактикам ЖРД, конечно, совсем непригодны. Масса всей метагалактики — 1056 граммов. Для того чтобы разогнаться на ЖРД хотя бы до четверти скорости света, потребуется совершенно невероятный объем топлива — 103200 граммов, так что даже думать об этом глупо. У ЖРД есть своя ниша — маршевые двигатели. На жидкостных двигателях можно разогнать носитель до второй космической скорости, долететь до Марса, и все.


Следующий этап — ядерные ракетные двигатели?


— Конечно. Доживем ли мы еще до каких-то этапов — неизвестно, а для разработки ЯРД многое было сделано уже в советское время. Сейчас под руководством Центра Келдыша во главе с академиком Анатолием Сазоновичем Коротеевым разрабатывается так называемый транспортно-энергетический модуль. Конструкторы пришли к выводу, что можно создать менее напряженный, чем был в СССР, ядерный реактор с газовым охлаждением, который будет работать и как электростанция, и как источник энергии для плазменных двигателей при передвижении в космосе. Такой реактор проектируется сейчас в НИКИЭТ имени Н. А. Доллежаля под руководством члена-корреспондента РАН Юрия Григорьевича Драгунова. В проекте также участвует калининградское КБ «Факел», где создаются электрореактивные двигатели. Как и в советское время, не обойдется без воронежского КБ химавтоматики, где будут изготавливаться газовые турбины, компрессоры, чтобы по замкнутому контуру гонять теплоноситель — газовую смесь.


А пока полетаем на ЖРД?


— Конечно, и мы четко видим перспективы дальнейшего развития этих двигателей. Есть задачи тактические, долгосрочные, тут предела нет: внедрение новых, более жаростойких покрытий, новых композитных материалов, уменьшение массы двигателей, повышение их надежности, упрощение схемы управления. Можно внедрить ряд элементов для более тщательного контроля за износом деталей и других процессов, происходящих в двигателе. Есть задачи стратегические: к примеру, освоение в качестве горючего сжиженного метана и ацетилена вместе с аммиаком или трехкомпонентного топлива. НПО «Энергомаш» занимается разработкой трехкомпонентного двигателя. Такой ЖРД мог бы применяться в качестве двигателя и первой, и второй ступени. На первой ступени он использует хорошо освоенные компоненты: кислород, жидкий керосин, а если добавить еще около пяти процентов водорода, то значительно увеличится удельный импульс — одна из главных энергетических характеристик двигателя, а это значит, что можно отправить в космос больше полезного груза. На первой ступени вырабатывается весь керосин с добавкой водорода, а на второй тот же самый двигатель переходит от работы на трехкомпонентном топливе на двухкомпонентное — водород и кислород.


Мы уже создали экспериментальный двигатель, правда, небольшой размерности и тягой всего около 7 тонн, провели 44 испытания, сделали натурные смесительные элементы в форсунки, в газогенераторе, в камере сгорания и выяснили, что можно сначала работать на трех компонентах, а потом плавно переходить на два. Все получается, достигается высокая полнота сгорания, но чтобы идти дальше, нужен более крупный образец, нужно дорабатывать стенды, чтобы запускать в камеру сгорания компоненты, которые мы собираемся применять в настоящем двигателе: жидкие водород и кислород, а также керосин. Думаю, это очень перспективное направление и большой шаг вперед. И надеюсь кое-что успеть сделать при жизни.


Почему американцы, получив право на воспроизведение РД-180, не могут сделать его уже много лет?


— Американцы очень прагматичны. В 1990-х, в самом начале работы с нами, они поняли, что в энергетической области мы намного опередили их и надо у нас эти технологии перенимать. К примеру, наш двигатель РД-170 за один запуск за счет большего удельного импульса мог вывезти полезного груза на две тонны больше, чем их самый мощный F-1, что означало по тем временам 20 миллионов долларов выигрыша. Они объявили конкурс на двигатель тягой 400 тонн для своих «Атласов», который выиграл наш РД-180. Тогда американцы думали, что они начнут с нами работать, а года через четыре возьмут наши технологии и будут сами их воспроизводить. Я им сразу сказал: вы затратите больше миллиарда долларов и десять лет. Четыре года прошло, и они говорят: да, надо шесть лет. Прошли еще годы, они говорят: нет, надо еще восемь лет. Прошло уже семнадцать лет, и они ни один двигатель не воспроизвели. Им сейчас только на стендовое оборудование для этого нужны миллиарды долларов. У нас на «Энергомаше» есть стенды, где в барокамере можно испытывать тот же двигатель РД-170, мощность струи которого достигает 27 миллионов киловатт.


Я не ослышался — 27 гигаватт? Это больше установленной мощности всех АЭС « Росатома».


— Двадцать семь гигаватт — это мощность струи, которая развивается относительно за короткое время. При испытаниях на стенде энергия струи сначала гасится в специальном бассейне, затем в трубе рассеивания диаметром 16 метров и высотой 100 метров. Чтобы построить подобный стенд, в котором помещается двигатель, создающий такую мощность, надо вложить огромные деньги. Американцы сейчас отказались от этого и берут готовое изделие. В результате мы продаем не сырье, а продукт с огромной добавленной стоимостью, в который вложен высокоинтеллектуальный труд. К сожалению, в России это редкий пример хайтек-продаж за границу в таком большом объеме. Но это доказывает, что при правильной постановке вопроса мы способны на многое.


Борис Иванович, что надо сделать, чтобы не растерять фору, набранную советским ракетным двигателестроением? Наверное, кроме недостатка финансирования НИОКР очень болезненна и другая проблема — кадровая?


— Чтобы остаться на мировом рынке, надо все время идти вперед, создавать новую продукцию. Видимо, пока нас до конца не прижало и гром не грянул. Но государству надо осознать, что без новых разработок оно окажется на задворках мирового рынка, и сегодня, в этот переходный период, пока мы еще не доросли до нормального капитализма, в новое должно прежде всего вкладывать оно — государство. Затем можно передавать разработку для выпуска серии частной компании на условиях, выгодных и государству, и бизнесу. Не верю, что придумать разумные методы созидания нового невозможно, без них о развитии и инновациях говорить бесполезно.


Кадры есть. Я руковожу кафедрой в Московском авиационном институте, где мы готовим и двигателистов, и лазерщиков. Ребята умнющие, они хотят заниматься делом, которому учатся, но надо дать им нормальный начальный импульс, чтобы они не уходили, как сейчас многие, писать программы для распределения товаров в магазинах. Для этого надо создать соответствующую лабораторную обстановку, дать достойную зарплату. Выстроить правильную структуру взаимодействия науки и Министерства образования. Та же Академия наук решает много вопросов, связанных с кадровой подготовкой. Ведь среди действующих членов академии, членов-корреспондентов много специалистов, которые руководят высокотехнологическими предприятиями и научно-исследовательскими институтами, мощными КБ. Они прямо заинтересованы, чтобы на приписанных к их организациям кафедрах воспитывались необходимые специалисты в области техники, физики, химии, чтобы они сразу получали не просто профильного выпускника вуза, а готового специалиста с некоторым жизненным и научно-техническим опытом. Так было всегда: самые лучшие специалисты рождались в институтах и на предприятиях, где существовали образовательные кафедры. У нас на «Энергомаше» и в НПО Лавочкина работают кафедры филиала МАИ «Комета», которой я руковожу. Есть старые кадры, которые могут передать опыт молодым. Но времени осталось совсем немного, и потери будут безвозвратные: для того, чтобы просто вернуться на существующий сейчас уровень, придется затратить гораздо больше сил, чем сегодня надо для его поддержания.


А вот и довольно свежие новости:


Самарское предприятие «Кузнецов» заключило предварительный договор на поставку Вашингтону 50 НК-33 - силовых установок, разработанных для советской лунной программы.

Опцион (разрешение) на поставку до 2020 года указанного количества двигателей заключен с американской корпорацией «Орбитал сайенсиз» (Orbital Sciences), выпускающей спутники и ракеты-носители, и компанией «Аэроджет» (Аerojet), являющейся одним из крупнейших в США производителей ракетных двигателей. Речь идет о предварительной договоренности, поскольку опционный договор предполагает право, но не обязательство покупателя совершить покупку на заранее определенных условиях. Два модифицированных двигателя НК-33 используются на первой ступени разработанной в США по контракту с НАСА ракеты-носителя «Антарес» (проектное название «Таурус-2»). Носитель предназначен для доставки грузов на МКС. Первый его запуск запланирован на 2013 год. Двигатель НК-33 разработан для ракеты-носителя Н1, которая должна была доставить советских космонавтов на Луну.


Была еще как то в блоге и довольно спорная информация, описывающая

Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

ОАО «Уфимское моторостроительное производственное объединение» — крупнейший разработчик и производитель авиационных двигателей в России. Здесь работают более 20 тысяч человек. УМПО входит в состав Объединенной двигателестроительной корпорации.

Основными видами деятельности предприятия являются разработка, производство, сервисное обслуживание и ремонт турбореактивных авиационных двигателей, производство и ремонт узлов вертолетной техники, выпуск оборудования для нефтегазовой промышленности. (52 фото)

УМПО серийно выпускает турбореактивные двигатели АЛ-41Ф-1С для самолетов Су-35С, двигатели АЛ-31Ф и АЛ-31ФП для семейств Су-27 и Су-30, отдельные узлы для вертолетов «Ка» и «Ми», газотурбинные приводы АЛ-31СТ для газоперекачивающих станций ОАО «Газпром».

Под руководством объединения ведется разработка перспективного двигателя для истребителя пятого поколения ПАК ФА (перспективный авиационный комплекс фронтовой авиации, Т-50). УМПО участвует в кооперации по производству двигателя ПД-14 для новейшего российского пассажирского самолёта МС-21, в программе производства вертолётных двигателей ВК-2500, в реконфигурации производства двигателей типа РД для самолётов МиГ.

1. Сварка в обитаемой камере «Атмосфера-24» . Интереснейшим этапом производства двигателя является аргонодуговая сварка наиболее ответственных узлов в обитаемой камере, обеспечивающая полную герметичность и аккуратность сварного шва. Специально для УМПО ленинградским институтом «Прометей» в 1981 году создан один из крупнейших в России участок сварки, состоящий из двух установок «Атмосфера-24».

2. По санитарным нормам рабочий может проводить в камере не более 4,5 часов в день. С утра — проверка костюмов, медицинский контроль, и только после этого можно приступать к сварке.

Сварщики отправляются в «Атмосферу-24» в легких космических скафандрах. Через первые двери шлюза они проходят в камеру, им прикрепляют шланги с воздухом, закрывают двери и подают внутрь камеры аргон. После того, как он вытеснит воздух, сварщики открывают вторую дверь, заходят в камеру и начинают работать.

3. В безокислительной среде чистого аргона начинается сварка конструкций из титана.

4. Контролируемый состав примесей в аргоне позволяет получить качественные швы и повысить усталостную прочность сварных конструкций, обеспечивает возможность подварки в самых труднодоступных местах за счет применения сварочных горелок без использования защитного сопла.

5. В полном облачении сварщик, действительно, похож на космонавта. Чтобы получить допуск к работе в обитаемой камере, рабочие проходят курс обучения, вначале они в полной экипировке тренируются на воздухе. Обычно двух недель достаточно, чтобы понять, годится человек для такой работы или нет — нагрузки выдерживает далеко не каждый.

6. Всегда на связи со сварщиками — специалист, следящий за происходящим с пульта управления. Оператор управляет сварочным током, следит за системой газоанализа и общим состоянием камеры и работника.

7. Ни один другой способ ручной сварки не даёт такого результата, как сварка в обитаемой камере. Качество шва говорит само за себя.

8. Электронно-лучевая сварка. Электронно-лучевая сварка в вакууме — полностью автоматизированный процесс. В УМПО он осуществляется на установках Ebokam. Одновременно сваривается два-три шва, причём с минимальным уровнем деформации и изменением геометрии детали.

9. Один специалист работает одновременно на нескольких установках электронно-лучевой сварки.

10. Детали камеры сгорания, поворотного сопла и блоков сопловых лопаток требуют нанесения теплозащитных покрытий плазменным способом. Для этих целей используется робототехнический комплекс ТСЗП-MF-P-1000.

11. Инструментальное производство . В составе УМПО 5 инструментальных цехов общей численностью около 2 500 человек. Они занимаются изготовлением технологического оснащения. Здесь создают станочные приспособления, штампы для горячей и холодной обработки металлов, режущий инструмент, мерительный инструмент, пресс-формы для литья цветных и черных сплавов.

12. Производство пресс-форм для лопаточного литья осуществляется на станках с ЧПУ.

13. Сейчас для создания пресс-форм нужно всего два-три месяца, а раньше этот процесс занимал полгода и дольше.

14. Автоматизированное средство измерения улавливает мельчайшие отклонения от нормы. Детали современного двигателя и инструмента должны быть изготовлены с предельно точным соблюдением всех размеров.

15. Вакуумная цементация . Автоматизация процессов всегда предполагает уменьшение затрат и повышение качества выполняемых работ. Это относится и к вакуумной цементации. Для цементации — насыщения поверхности деталей углеродом и повышения их прочности — используются вакуумные печи Ipsen.

Для обслуживания печи достаточно одного работника. Детали проходят химико-термическую обработку в течение нескольких часов, после чего становятся идеально прочными. Специалисты УМПО создали собственную программу, которая позволяет осуществлять цементирование с повышенной точностью.

16. Литейное производство . Производство в литейном цехе начинается с изготовления моделей. Из специальной массы прессуются модели для деталей разных размеров и конфигураций с последующей ручной отделкой.

17. На участке изготовления выплавляемых моделей работают преимущественно женщины.

18. Облицовка модельных блоков и получение керамических форм — важная часть технологического процесса литейного цеха.

19. Перед заливкой керамические формы прокаливаются в печах.

21. Так выглядит залитая сплавом керамическая форма.

22. «На вес золота» — это о лопатке с монокристаллической структурой. Технология производства такой лопатки сложная, но и работает эта дорогая во всех отношениях деталь гораздо дольше. Каждая лопатка «выращивается» с использованием специальной затравки из никеле-вольфрамового сплава.

23. Участок обработки полой широкохордной вентиляторной лопатки . Для производства полых широкохордных вентиляторных лопаток двигателя ПД-14 — движущей установки перспективного гражданского самолёта МС-21 — создан специальный участок, где осуществляется вырезка и механическая обработка заготовок из титановых плит, окончательная механическая обработка замка и профиля пера лопатки, включая его механическую шлифовку и полировку.

24. Окончательная обработка торца пера лопатки.

25. Комплекс производства роторов турбины и компрессора (КПРТК) — это локализация имеющихся мощностей для создания основных составляющих элементов реактивного привода.

26. Сборка роторов турбины — трудоёмкий процесс, требующий особенной квалификации исполнителей. Высокая точность обработки соединения «вал-диск-носок» — гарантия долгосрочной и надёжной работы двигателя.

27. Многоступенчатый ротор собирается в единое целое.

28. Балансировку ротора осуществляют представители уникальной профессии, которой в полной мере можно овладеть только в заводских стенах.

29. Производство трубопроводов и трубок . Чтобы все агрегаты двигателя слаженно функционировали — компрессор нагнетал, турбина крутилась, сопло прикрывалось или открывалось, нужно подавать им команды. «Кровеносными сосудами» сердца самолёта считаются трубопроводы — именно по ним передаётся самая разная информация. В УМПО есть цех, который специализируется на изготовлении этих «сосудов» — разнокалиберных трубопроводов и трубок.

30. На мини-заводе по производству трубок требуется ювелирная ручная работа — некоторые детали являются настоящими рукотворными произведениями искусства.

31. Многие операции по трубогибу выполняет и станок с числовым программным управлением Bend Master 42 MRV. Он гнёт трубки из титана и нержавеющей стали. Сначала определяют геометрию трубы по бесконтактной технологии с помощью эталона. Полученные данные отправляют на станок, который производит предварительное сгибание, или на заводском языке — гиб. После производится корректировка и окончательный гиб трубки.

32. Так выглядят трубки уже в составе готового двигателя — они оплетают его, как паутина, и каждая выполняет свою задачу.

33. Окончательная сборка . В сборочном цехе отдельные детали и узлы становятся целым двигателем. Здесь трудятся слесари механосборочных работ высочайшей квалификации.

34. Собранные на разных участках цеха крупные модули стыкуются сборщиками в единое целое.

35. Конечным этапом сборки является установка редукторов с топливно-регулирующими агрегатами, коммуникаций и электрооборудования. Производится обязательная проверка на соосность (для исключения возможной вибрации), центровка, так как все детали поставляются из разных цехов.

36. После предъявительских испытаний двигатель возвращается в сборочный цех на разборку, промывку и дефектацию. Сначала изделие разбирают и промывают бензином. Затем — внешний осмотр, замеры, специальные методы контроля. Часть деталей и сборочных единиц направляется для такого же осмотра в цехи-изготовители. Потом двигатель собирают вновь — на приёмо-сдаточные испытания.

37. Слесарь-сборщик собирает крупный модуль.

38. Слесари МСР выполняют сборку величайшего творения инженерной мысли XX века — турбореактивного двигателя — вручную, строго сверяясь с технологией.

39. Управление технического контроля отвечает за безупречное качество всей продукции. Контролёры работают на всех участках, в том числе — и в сборочном цехе.

40. На отдельном участке собирают поворотное реактивное сопло (ПРС) — важный элемент конструкции, отличающий двигатель АЛ-31ФП от его предшественника АЛ-31Ф.

41. Ресурс работы ПРС — 500 часов, а двигателя — 1000, поэтому сопел нужно делать в два раза больше.

42. На специальном мини-стенде проверяют работу сопла и его отдельных частей.

43. Двигатель, оснащённый ПРС, обеспечивает самолёту большую манёвренность. Само по себе сопло выглядит довольно внушительно.

44. В сборочном цехе имеется участок, где выставлены эталонные образцы двигателей, которые изготавливались и изготавливаются последние 20-25 лет.

45. Испытания двигателей . Испытание авиационного двигателя — завершающий и очень ответственный этап в технологической цепочке. В специализированном цехе осуществляются предъявительские и приёмо-сдаточные испытания на стендах, оснащённых современными автоматизированными системами управления технологическими процессами.

46. В ходе испытаний двигателя используется автоматизированная информационно-измерительная система, состоящая из трех компьютеров, объединенных в одну локальную сеть. Испытатели контролируют параметры двигателя и стендовых систем исключительно по показаниям компьютера. В режиме реального времени производится обработка результатов испытания. Вся информация о проведенных испытаниях хранится в компьютерной базе данных.

47. Собранный двигатель проходит испытания согласно технологии. Процесс может занимать несколько суток, после чего двигатель разбирают, промывают, дефектируют. Вся информация о проведённых испытаниях обрабатывается и выдаётся в виде протоколов, графиков, таблиц, как в электронном виде, так и на бумажном носителе.

48. Внешний вид испытательного цеха : когда-то гул испытаний будил всю округу, теперь наружу не проникает ни один звук.

49. Цех № 40 — место, откуда вся продукция УМПО отправляется заказчику. Но не только — здесь осуществляется окончательная приёмка изделий, агрегатов, входной контроль, консервация, упаковка.

Двигатель АЛ-31Ф отправляется на упаковку.

50. Двигатель ожидает аккуратное обёртывание в слои упаковочной бумаги и полиэтилена, но это не всё.

51. Двигатели помещаются в спроектированную для них специальную тару, которая маркирована в зависимости от типа изделия. После упаковки идёт комплектация сопроводительной технической документацией: паспортами, формулярами и пр.

52. Двигатель в действии!

Фотографии и текст

Измена мужа